Existence, uniqueness and Ulam stability results for a mixed-type fractional differential equations with p-Laplacian operator
نویسندگان
چکیده
Abstract In this paper, we study a nonlinear fractional p-Laplacian boundary value problem containing both left Riemann–Liouville and right Caputo derivatives with initial integral conditions. Some new results on the existence uniqueness of solution for model are obtained as well Ulam stability solutions. Two examples provided to show applicability our results.
منابع مشابه
Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator
In this paper, we study the existence and uniqueness of solution (EUS) as well as Hyers-Ulam stability for a coupled system of FDEs in Caputo’s sense with nonlinear p-Laplacian operator. For this purpose, the suggested coupled system is transferred to an integral system with the help of four Green functions G1 (t, s), G1 (t, s), G2 (t, s), G2 (t, s). Then using topological degree theory and Ler...
متن کاملSome New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations
This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...
متن کاملExistence and uniqueness results for q-fractional difference equations with p-Laplacian operators
In this paper, we consider the following two-point boundary value problem for q-fractional p-Laplace difference equations. New results on the existence and uniqueness of solutions for q-fractional boundary value problem are obtained. These results extend the corresponding ones of ordinary differential equations of integer order. Finally, an example is presented to illustrate the validity and pr...
متن کاملEigenvalue of Fractional Differential Equations with p-Laplacian Operator
Differential equations of fractional order have been recently proved to be valuable tools in the modeling of many phenomena arising from science and engineering, such as viscoelasticity, electrochemistry, control, porous media, and electromagnetism. For detail, see the monographs of Kilbas et al. [1],Miller and Ross [2], and Podlubny [3] and the papers [4–23] and the references therein. In [16]...
متن کاملExistence and uniqueness results for a nonlinear differential equations of arbitrary order
This paper studies a fractional boundary value problem of nonlinear differential equations of arbitrary orders. New existence and uniqueness results are established using Banach contraction principle. Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. In order to clarify our results, some illustrative examples are also presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arabian Journal of Mathematics
سال: 2023
ISSN: ['2193-5343', '2193-5351']
DOI: https://doi.org/10.1007/s40065-023-00436-x